How Breathing & Physical Health Interact

Jesse Oswald • May 22, 2024

Highlights:

  • Breathing affects physical health through 3 fundamental mechanisms. The excitation of the central nervous system, the mechanical movement of the diaphragm, and the regulation of our blood’s chemistry. 
  • These three pathways can become the source or a significant contributor to several conditions, from lower back pain to allergic reactions, inflammation, and cardiovascular disease. 
  • Breathing correctly is thus a fundamental mechanism for maintaining healthy blood chemistry, nervous system balance, and abdominal function. 


Humans have widely leveraged the connection between breathing and physical health throughout millennia as a healing tool for the disorders of our body and the soul. Our previous article, “Breathing & Psychological Stress: A two-way street,” described the physiological processes that connect the brain and breathing, enabling us to control stress levels and emotions by deliberately changing our breathing. However, a set of similar functions can also heavily influence other core physiological processes that can impact our physical health. 


The scientific community’s renewed interest in the mechanics and biology of breathing has shed light on the fundamental mechanisms connecting respiration and the mind and those connecting respiration and physical health. By analyzing them, we can begin to understand how chronic inflammation and over-excitation of our immune system lead to auto-immune disorders, lower back pain, digestion disorders, and more. 


As a first step, let’s understand the fundamental biomarkers that characterize how healthy our breathing process is. These include:


  • End-tidal CO2: The amount of carbon dioxide we exhale.
  • Tidal volume: The volume of air we exhale.
  • Breathing frequency: The number of breaths we take per minute. 


These biomarkers reflect our breathing health because they constitute the basic mechanisms by which breathing affects nearly everybody process, including digestion, immune response, mitochondrial function, cardiovascular health, and hormonal balance. To understand how all these systems are affected by our breathing, let’s examine, step by step, the sequence of events occurring when the three fundamental breathing variables are perturbed from their average values. 


How Breathing Affects The Nervous System

Breathing and the autonomic nervous system (ANS) are inextricably linked through various mechanisms. ANS is divided into two parts: the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous System (PNS). SNS causes us to go into “fight-or-flight” mode by engaging all the mechanisms required for movement, preservation, and fast reaction. Conversely, PNS causes feelings of relaxation and enables us to recover, digest, and heal. The link between ANS and breathing is made possible through how the neurons connect to the different lung parts. Specifically, SNS is connected to the upper part, whereas PNS is connected to the lower lungs. Due to the anatomy of the connection between lungs, SNS, and PNS, we engage SNS and partially deactivate PNS when we breathe faster and shallower. On the contrary, when we deliberately breathe deeper and slower, we can activate PNS thanks to its connection to the lower part of our lungs and thus enable feelings of relaxation. 

 

Breathing continuously faster and shallower, a condition called Chronic Hyperventilation Syndrome (CHS), causes a chronic hyper-activation of SNS, setting our body in a perpetual state of increased stress. Engagement of SNS signals to our body the presence of danger and thus triggers a chain of reactions to prime us for facing it. Although these processes have been developed over thousands of years of evolution and can be lifesaving given their effect of setting us ready to respond to threats, their constant activation causes a cascade of negative repercussions. Here are the main mechanisms and physiological systems affected:

 

  • Digestive System: The engagement of SNS causes blood to leave the stomach and core and is channelled to the brain and muscles to render our body ready to think and react fast. Stomach ischemia (lack or absence of blood) causes digestion to slow or halt, leading to chronic digestion and gastrointestinal issues.
  • Cardiovascular System: Engagement of the SNS increases blood pressure to render our muscles better able to reach fast and respond to threats. However, a chronic increase in blood pressure leads to hypertension, eventually leading to life-threatening cardiovascular conditions such as coronary artery disease. Moreover, irregular breathing patterns can lead to diaphragmatic atrophy, in which the diaphragm moves less, adding additional strain to the heart. 
  • Immune System: Engagement of the SNS also engages our immune system through the Hypothalamic-Pituitary-Adrenal (HPA) axis. The HPA axis is the conglomeration of three critical physiological systems, namely the Hypothalamus, the Pituitary, and the Adrenal gland, that cooperate to convert brain signals and stimuli into physiological responses necessary to elicit the appropriate bodily reaction. When stress stimulus occurs
  • Endocrine regulation: Engagement of the SNS also impacts our hormones critical to the endocrine balance through the Hypothalamic-Pituitary-Adrenal (HPA) axis. The HPA axis is the conglomeration of three crucial physiological systems, namely the Hypothalamus, the Pituitary, and the Adrenal gland, that cooperate to convert brain signals and stimuli into physiological responses necessary to elicit the appropriate bodily reaction. When a stress stimulus is perceived through the hypothalamus, it sends an alert to the pituitary gland through the corticotropin-releasing hormone (CRH). In addition to stimulating the sympathetic nervous system, CRH will stimulate the pituitary gland and cause it to release adrenocorticotropic hormone (ACTH). ACTH travels through the body and targets the adrenal gland causing them to release cortisol. When stress is constantly elevated, cortisol levels will remain high and induce a cascade of adverse effects, including:
  • Suppression of reproductive function
  • Increase in insulin resistance, a precursor to diabetes
  • Suppression of growth and thyroid hormone release impedes development, physical recovery, and thyroid function.
  • Immune system hyperactivation: Our central nervous system is also interconnected with our immune system through a molecule called Cytokines. Cytokines are a general category of small proteins that play an essential role in cell signalling. They control the growth and activity of immune blood cells, enabling them to trigger inflammation and respond to pathogens. Overactivation of the sympathetic nervous system can, therefore, result in constant activation of the immune system, leading to chronic inflammation and auto-immune disorders.

How Mechanics Of Breathing Affect Our Body

In addition to the nervous-based interaction between breathing and several key sectors of our physiology, breathing also affects our health through the mechanics of respiration.

 

  • Cardiovascular Strain: One of the most critical systems in our breathing apparatus is the diaphragm, a dome-shaped muscle between the lungs and the abdominal area. The diaphragm moves down and up, and we inhale and exhale. Our abdomen contains 25-30% of our body’s total blood volume, making it one of the most blood-dense areas of our body. Rapid and shallow breathing reduces the engagement of the diaphragm and can, over time, lead to diaphragmatic atrophy, the state where the diaphragm weakens and moves less during respiration. The movement of the diaphragm aids in abdominal blood circulation, representing a significant part of the overall blood circulation in our body. This is why the diaphragm is also referred to as the second heart. As a result, diaphragmatic atrophy leads to a minor contribution of the diaphragm on blood circulation and thus increases the load our heart has to support whole-body circulation. 

 

  • Posture and skeletal muscular disorders: The diaphragm is a critical component of our breathing apparatus. Strong diaphragmatic engagement increases abdominal pressure, engages the abdominal muscles, and thus provides support to our core and lower back. On the contrary, weak diaphragmatic movement caused by shallow breathing weakens our core stability and is a key factor for developing lower back pain and other skeletal muscle disorders.

 

  • Brain oxygenation: Breathing and hyperventilation is the primary regulator of the blood's balance between oxygen and carbon dioxide. As breathing becomes faster, the air exhaled increases along with the amount of carbon dioxide (CO2) expelled through the body. As more CO2 leaves the body, CO2 circulating in the blood declines, causing a cascade of adverse effects as it is responsible for two critical biological functions. First, CO2 enables oxygen molecules to detach from hemoglobin (the substance in our blood responsible for transporting oxygen from our lungs across the body) and enter the cells that need them to produce energy. Second, CO2 regulates how narrow or wide our arteries are and the amount of blood delivered across the body. As a result, reducing, making it harder for oxygen to enter cells and narrowing the arteries, diminishing blood delivery to the brain and across the body.  

 

The following graph provides a summary of how these mechanisms interact with each other:

Conclusion

Breathing is a crucial regulator of several critical functions, including blood chemistry, nervous system balance, and abdominal pressure. Learning how to breathe in accordance with your metabolic needs can become a healing factor for many psychosomatic disorders and prevent the onset of chronic conditions. As a result, breathing is the most influential physiological function that’s in your control. 

An Ounce of Prevention - Hyperion Health Blog

A woman is helping an older woman do exercises on an exercise ball in a gym.
By Jesse Oswald January 29, 2025
What is a Kinesiologist?
A woman is wearing an oxygen mask while running on a treadmill.
By Jesse Oswald January 20, 2025
Highlights Healthcare expenses are skyrocketing, with consumers and employers facing the significant brunt. Identifying those likely to get sick is critical as our resource-strapped healthcare system should focus on those likely to become the most significant burden to the system. VO2 max is a crucial longevity indicator that can also accurately predict healthcare expenses. The rampant chronic disease epidemic and the resulting surge in medical expenses is one of the most dire problems of modern societies, probably only second to climate change. Healthcare inflation is on a meteoric rise, and for those with limited or no healthcare coverage, a medical emergency is the equivalent of personal bankruptcy. A dire problem for employers In the US, employers and consumers who face rising health insurance premiums and astronomical out-of-pocket medical expenses feel the brunt of rising healthcare costs. Such is the problem that even large, well-capitalized corporations choose to send employees overseas for specific medical procedures since the cost of traveling and treatment in a foreign country is lower than the cost of care in the US. Another startling example is the infamous "northern caravan," a term that describes people with diabetes in the northern states who travel to Canada to secure their insulin supply. According to McKinsey , a survey conducted among over 300 employers highlighted that the average increase in the cost of health benefits over the past three years has been within the range of 6 to 7 percent. This survey also indicated that any rate increases exceeding 4 to 5 percent were deemed unsustainable. Interestingly, 95 percent of the surveyed employers expressed willingness to contemplate reducing benefits if costs surged by 4 percent or more. The primary cost-control measures that these employers indicated they might explore included elevating the portion of premium costs covered by employees and a potential transition to high-deductible health plans. Why is Breath Analysis relevant? Vis-a-vis this problem, the early and accurate estimation of who will get sick and how much they will cost is as critical as the treatment itself. The reason is that no other method of accurately identifying at-risk populations exists; it helps focus our scarce prevention resources and attention on those most in need. Breath analysis, AKA VO2max or metabolic testing, is an assessment that reveals two key biomarkers that provide significant predictive value for one's likelihood of developing costly chronic conditions. These two biomarkers are VO2max and the Respiratory Exchange Ratio. In this article, we will dive into VO2max to understand why it's a critical reflection of our overall health and, consequently, a window into our future healthcare spend. What is VO2max? Let's start with the basics. What is VO2max? VO2 max is the maximum amount of oxygen the human body can absorb. It is measured in terms of milliliters of oxygen consumed per kilogram of body weight. The below formula below indicates how VO2max is calculated: The numerator indicates the volume of oxygen your heart, lungs, and cells can absorb, expressed in milliliters per minute. The denominator indicates the weight of the individual represented in kilograms. 
There are many different types of fats in this picture.
By Jesse Oswald January 13, 2025
Key points A total fat intake between 20-35% ensures sufficient intake of essential fatty acids and fat-soluble vitamins Omega-6 PUFAs are primarily found in vegetable oils, while omega-3 PUFAs are primarily found in fatty fish and fish oils Both omega-3 PUFAs and MUFAs have established benefits for cardiovascular disease TFAs are the only dietary lipids that have a strong positive relationship with cardiovascular disease Omega-3 PUFA supplementation increases the beneficial bacteria of the human microbiome Over the last three decades, there has been a great revolution against fat due to its suspected association with several nutritional health issues, especially cardiovascular disease. There was a tremendous amount of evidence that indicated dietary cholesterol and saturated fat as the main culprits of cardiovascular disease, thus morbidity and mortality. It was when all the low-fat and no-fat dairy products started to launch, promising even complete substitution of the cholesterol-lowering heart medication if these products were exclusively consumed. Let’s start from the beginning. Dietary fat intake can vary significantly and still meet energy and nutrient needs. International guidelines suggest a total fat intake between 20% and 35% of the daily caloric consumption. This range ensures sufficient intake of essential fatty acids and fat-soluble vitamins. Not only does the quantity of the ingested fat matter, but most importantly, its quality. Some dietary fats have beneficial effects, with a significant role in maintaining good health, while others may threaten it. Which are, after all, the dietary fats? Dietary fats is a rather heterogeneous group of organic compounds, including four main types of fat, which are elaborately described in the following sections of this article. Polyunsaturated fatty acids (PUFAs) Polyunsaturated fatty acids (PUFAs) have two or more carbon-carbon double bonds. Omega-6 PUFAs and omega-3 PUFAs are the main types of PUFAs and are classified according to the location of the first unsaturated bond (sixth and third carbon atom, respectively). Alpha-Linolenic acid (ALA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA) are the most important omega-3 PUFAs. ALA is an essential fatty acid that can only be obtained from diet and can be converted into EPA and then to DHA, but the rate of this conversion is finite, approximately 7.0%–21% for EPA and 0.01%–1% for DHA. In the same way, the most important omega-6 PUFAs are linoleic acid (LA) and arachidonic acid (ARA). LA is an essential fatty acid that, in order to give rise to ARA, needs to be ingested through the diet as the human body cannot synthesize it. The recommended intake for total PUFA ranges between 5% and 10% of the total energy intake, while a total omega-3 PUFA intake of 0.5%–2% and a total omega-6 PUFA intake of 2.5%-5% is suggested. A dietary ratio of omega−6/omega−3 PUFA is recommended to be 1:1–2:1 to balance their competing roles and achieve health benefits. Omega-6 and omega-3 PUFAs Omega-6 PUFAs, in the form of LA, are plentiful in most crop seeds and vegetable oils, such as canola, soybean, corn, and sunflower oils. In contrast to omega-6 PUFAs, omega-3 PUFAs are obtained from a limited range of dietary sources. Flax, chia, and perilla seeds are rich in ALA, with significant amounts also detected in green leafy vegetables. The consumption of fatty fish, such as salmon, sardines, tuna, trout, and herring, provides high amounts of EPA and DHA. Besides fish and their oils, small amounts of omega-3 PUFAs are also detected in red meat like beef, lamb, and mutton. All the above dietary sources provide EPA, DPA, DHA, LA, and ARA in different amounts, and their intake is necessary for normal physiological function. PUFAs play a critical role in many chronic diseases, affecting human cells by regulating inflammation, immune response, and angiogenesis. Omega-3 PUFAs’ role against hypertriglyceridemia has been clarified, and research indicates that systematically consuming oily fish can contribute to general heart protection. Supplementation with omega-3 PUFAs could potentially lower the risk of several cardiovascular outcomes, but the evidence is stronger for individuals with established coronary heart disease. Moreover, adequate EPA and DHA levels are necessary for brain anatomy, metabolism, and function. Although the mechanisms underlying omega-3 PUFAs' cardioprotective effects are still poorly understood, several studies have been conducted in this direction. Unfortunately, that does not hold true for their omega-6 counterparts, for which controversial emerging data tend to show anti-inflammatory behavior that needs to be further studied. Monounsaturated fatty acids (MUFAs) In contrast to PUFAs, monounsaturated fatty acids (MUFAs) are easily produced by the liver in response to the ingestion of carbohydrates. The main MUFA is oleic acid, found in plant sources, such as olive oil, olives, avocado, nuts, and seeds, while minimal amounts are also present in meat, eggs, and dairy products. Specific guidelines around MUFAs’ dietary consumption do not exist. Therefore, MUFAs are recommended to cover the remaining fat intake requirements to reach the total daily fat intake goal. A growing body of research shows that dietary MUFAs reduce or prevent the risk of metabolic syndrome, cardiovascular disease (CVD), and hypertension by positively affecting insulin sensitivity, blood lipid levels, and blood pressure, respectively. Moreover, olive oil contains several bioactive substances, possessing anti-tumor, anti-inflammatory, and antioxidant qualities. According to a meta-analysis, consuming olive oil was linked to a lower risk of developing any sort of cancer, especially breast cancer and cancer of the digestive system. Another study found that an isocaloric replacement of 5% of the energy from saturated fatty acids (SFAs) with plant MUFAs led to an 11% drop in cancer mortality over a 16-year follow-up period. Therefore, including MUFAs in the everyday diet offers multifaceted benefits in chronic disease prevention and management, including cancer and general health promotion.  Saturated fatty acids (SFAs) Saturated fatty acids (SFAs) form a heterogeneous group of fatty acids that contain only carbon-to-carbon single bonds. Whole-fat dairy, (unprocessed) red meat, milk chocolate, coconut, and palm kernel oil are all SFA-rich foods. These fatty acids have distinct physical and chemical profiles and varying effects on serum lipids and lipoproteins. Stearic, palmitic, myristic, and lauric acids are the principal SFAs found in most natural human diets. Dietary practice and guidelines recommend limiting SFA intake to <10% of the total energy (E%), while the American Heart Association suggests an even lower intake of <7 E% because total saturated fat consumption and LDL-C levels are positively correlated. However, the role of SFAs in CVDs is quite complex, and the evidence is heterogeneous. In a recent study with a 10.6-year follow-up period, which included 195,658 participants, there was no proof that consuming SFAs was linked to developing CVD while replacing saturated fat with polyunsaturated fat was linked to an increased risk of CVD. Moreover, according to 6 systematic reviews and meta-analyses, cardiovascular outcomes and total mortality were not significantly impacted by substituting saturated fat with polyunsaturated fat. Even if these analyses were to be challenged, due to heterogenous evidence, the possible reduction in CVD risk associated with replacing SFAs with PUFAs in several studies may not necessarily be an outcome of SFAs’ negative effect but rather a potential positive benefit of PUFAs. Regarding SFAs' effect on different types of cancers, associations of their intake with an increased risk of prostate and breast cancer have been indicated. Conversely, a meta-analysis showed no link between SFA intake and a higher risk of colon cancer; similarly, consuming MUFAs, PUFAs, or total fat did not affect colon cancer risk. Hence, the role of SFA consumption in preventing, promoting, or having a neutral role in serious chronic diseases has not been fully elucidated yet. Trans fatty acids (TFAs) Trans fatty acids (TFAs) are created industrially by partially hydrogenating liquid plant oils or can be naturally derived from ruminant-based meat and dairy products. TFAs are highly found in commercial baked goods, biscuits, cakes, fried foods, etc. Guidelines regarding TFAs are stringent and limit TFA intake to <1% of energy or as low as possible. In 2015, the US Food and Drug Administration declared that industrial TFAs are no longer generally recognized as safe and should be eliminated from the food supply as their consumption is strongly linked to various CVD risk factors. Specifically, TFA intake raises triglycerides and increases inflammation, endothelial dysfunction, and hepatic fat synthesis, leading to a significantly increased risk of coronary heart disease (CHD). A meta-analysis suggested that increased TFA intake led to an increase in total and LDL-cholesterol and a decrease in HDL-cholesterol concentrations. Data also indicates that TFAs may influence carcinogenesis through inflammatory pathways, but the reported data are debatable. A recent study investigated the effects of all types of dietary fat intake on CVD risk. While PUFA, MUFA, and SFA intake were not linked to higher CVD risk, dietary TFA intake showed a strong association with CVD risk. Analysis indicated PUFA intake and CVD risk were inversely correlated, and the relative risk of CVD was reduced by 5% in studies with a 10-year follow-up. Dietary lipids and the human microbiome Dietary lipids also affect human microbiota composition. Studies have identified a close association between the human microbiome and metabolic diseases, including obesity and type 2 diabetes. Diets with a high omega-6 PUFA, SFA, and TFA intake increase the amount of many detrimental bacteria in the microbiome and reduce the amount of the beneficial ones, altering the microbiota composition and inducing inflammation via the secretion of pro-inflammatory cytokines. These bacteria may disrupt the gut barrier function, allowing lipopolysaccharides (LPS) translocation, which are bacterial toxins. This condition is linked to metabolic perturbations such as dyslipidemia, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and CVD. On the contrary, omega-3 PUFA (EPA and DHA) supplementation increases beneficial bacteria and limits harmful ones, enhancing intestinal barrier functioning and preventing LPS translocation and its implications. Omega-3 PUFA supplementation has also been studied as a means of mental health disorders management, but the evidence is still controversial. A possible protective impact of fish consumption on depression has been suggested by various studies, as well as a possible protective effect of dietary PUFAs on moderate cognitive impairment. A recent review of meta-analyses indicated that omega-3 PUFA supplementation might have potential value in mental health disorders, but data credibility is still weak. Dietary lipids and obesity Last but not least, obesity and its management is another field that dietary lipids intake seems to impact with their mechanisms. A diet high in PUFA has been shown to lower the total mass of subcutaneous white adipose tissue (the predominant fat type in human bodies), reduce blood lipid levels, and improve insulin sensitivity. In a study comparing PUFA and MUFA isocaloric intake, PUFA was more advantageous and lowered visceral adiposity in patients with central obesity. By stimulating brown adipose tissue, which aids energy expenditure through its elevated thermogenic activity, omega-3 PUFAs seem to elicit these positive effects in fat tissue, thus being useful in preventing and/or managing obesity. Another related study compared PUFA to SFA overfeeding in dietary surplus conditions that aimed to increase weight by 3%. While SFA overfeeding led to weight gain, primarily through the expansion of the visceral adipose tissue, PUFA overfeeding also led to weight gain, but because of a greater expansion of lean tissue mass. To sum up, dietary fats are an essential part of the human diet with many important physiologic functions, including cell function, hormone production, energy, and nutrient absorption. Moreover, dietary fat consumption is associated with positive outcomes in regard to cardiovascular disease, metabolic syndrome, cancer, and depression. Therefore, there is no reason to demonize this valuable dietary component, incriminating it for irrelevant adverse health outcomes, primarily weight loss failure and obesity. References 1. Astrup A, Magkos F, Bier DM, Brenna JT, de Oliveira Otto MC, Hill JO, King JC, Mente A, Ordovas JM, Volek JS, Yusuf S, Krauss RM. Saturated fats and health: A reassessment and proposal for food-based recommendations: JACC State-of-the-Art review. J Am Coll Cardiol. 2020;76(7):844-857. DOI: 10.1016/j.jacc.2020.05.077 2. Bojková B, Winklewski PJ, Wszedybyl-Winlewska M. Dietary fat and cancer-Which is good, which is bad, and the body of evidence. Int J Mol Sci. 2020;21(11):4114. DOI: 10.3390/ijms21114114 3. Custers, Emma EM, Kiliaan, Amanda J. Dietary lipids from body to brain. Prog Lipid Res. 2022;85:101144. DOI: 10.1016/j.plipres.2021.101144 4. de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978. DOI: 10.1136/bmj.h3978 5. Gao X, Su X, Han X, Wen X, Cheng C, Zhang S, Li W, Cai J, Zheng L, Ma J, Liao M, Ni W, Liu T, Liu D, Ma W, Han S, Zhu S, Ye Y, Zeng F-F. Unsaturated fatty acids in mental disorders: An umbrella review of meta-analyses. Adv Nutr. 2022;13(6):2217-2236. DOI: 10.1093/advances/nmac084 6. Liu AG, Ford NA, Hu FB, Zelman KM, Mozaffarian D, Kris-Etherton PM. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J. 2017;16(1):53. DOI: 10.1186/s12937-017-0271-4 7. Poli A, Agostoni C, Visioli F. Dietary fatty acids and inflammation: Focus on the n-6 series. Int J Mol Sci. 2023;24(5):4567. DOI: 10.3390/ijms24054567 8. Saini RK, Keum Y-S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance-A review. Life Sci. 2018;203:255-267. DOI: 10.1016/j.lfs.2018.04.049 9. Saini RK, Prasad P, Sreedhar RV, Naidu KA, Shang X, Keum Y-S. Omega-3 polyunsaturated fatty acids (PUFAS): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits-A review. Antioxidants (Basel). 2021;10(10):1627. DOI: 10.3390/antiox10101627 10. Zhao M, Chiriboga D, Olendzki B, Xie B, Li Y, McGonigal LJ, Maldonado-Contreras A, Ma Y. Substantial increase in compliance with saturated fatty acid intake recommendations after one year following the American Heart Association diet. Nutrients. 2018;10(10):1486. DOI: 10.3390/nu10101486 11. Zhu Y, Bo Y, Liu Y. Dietary total fat, fatty acids intake, and risk of cardiovascular disease: a dose-response meta-analysis of cohort studies. Lipids Health Dis. 2019;18:91. DOI: 10.1186/s12944-019-1035-2
SHOW MORE